zip()是Python的一个内建函数,它接受一系列可迭代的对象作为参数,将对象中对应的元素打包成一个个tuple(元组),然后返回由这些tuples组成的list(列表)。这篇文章主要介绍了python中的 zip函数详解及用法举例,需要的朋友可以参考下

python中zip()函数用法举例

定义:zip([iterable, ...])

zip()是Python的一个内建函数,它接受一系列可迭代的对象作为参数,将对象中对应的元素打包成一个个tuple(元组),然后返回由这些tuples组成的list(列表)。若传入参数的长度不等,则返回list的长度和参数中长度最短的对象相同。利用*号操作符,可以将list unzip(解压),看下面的例子就明白了:

示例1

x = [1, 2, 3]
y = [4, 5, 6]
z = [7, 8, 9]
 
xyz = zip(x, y, z)

print xyz运行的结果是:

[(1, 4, 7), (2, 5, 8), (3, 6, 9)]

示例2,在两个list长度不相等时的情况:

x = [1, 2, 3]
y = [4, 5, 6, 7]
xy = zip(x, y)

print xy运行的结果是:

[(1, 4), (2, 5), (3, 6)]

示例3

>>> name=('jack','beginman','sony','pcky')
>>> age=(2001,2003,2005,2000)
>>> for a,n in zip(name,age):
  print a,n

输出:

jack 2001 beginman 2003 sony 2005 pcky 2000

示例4,只有一个list的情况:

x = [1, 2, 3]
x = zip(x)

print x运行的结果是:

[(1,), (2,), (3,)]

示例5:

搭配for循环,支持并行迭代操作方法 zip()方法用在for循环中,就会支持并行迭代:

  l1 = [2,3,4]
  l2 = [4,5,6]
  for (x,y) in zip(l1,l2):
     print x,y,'--',x*y
2 4 -- 8
3 5 -- 15
4 6 -- 24

其实它的工作原理就是使用了zip()的结果,在for循环里解包zip结果中的元组,用元组赋值运算。就好像(x,y)=(2,6),赋值、序列解包操作。在对文件的操作中我们也会用到遍历,例如Python遍历文件夹目录与文件操作,就是很方便实用的。

1

示例6:二维矩阵变换(矩阵的行列互换)

比如我们有一个由列表描述的二维矩阵 ,a = [[1, 2, 3], [4, 5, 6], [7, 8, 9]],通过python列表推导的方法,我们也能轻易完成这个任务

 

 print [ [row[col] for row in a] for col in range(len(a[0]))] [[1, 4, 7], [2, 5, 8], [3, 6, 9]]

另外一种让人困惑的方法就是利用zip函数:  

>>> a = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]   >>> zip(*a) [(1, 4, 7), (2, 5, 8), (3, 6, 9)]   >>> map(list,zip(*a))

[[1, 4, 7], [2, 5, 8], [3, 6, 9]]   

这种方法速度更快但也更难以理解,将list看成tuple解压,恰好得到我们“行列互换”的效果,再通过对每个元素应用list()函数,将tuple转换为list

示例7:以指定概率获取元素

>>> import random 
  >>> def random_pick(seq,probabilities): 
   x = random.uniform(0, 1) 
   cumulative_probability = 0.0 
   for item, item_probability in zip(seq, probabilities): 
   cumulative_probability += item_probability 
   if x < cumulative_probability: 
     break 
   return item 
  >>> for i in range(15): 
  random_pick("abc",[0.1,0.3,0.6]) 
  'c' 'b' 'c' 'c' 'a' 'b' 'c' 'c' 'c' 'a' 'b' 'b' 'c' 'a' 'c'

这个函数有个限制,指定概率的列表必须和元素一一对应,而且和为1,否则这个函数可能不能像预想的那样工作。稍微解释下,先利用random.uniform()函数生成一个0-1之间的随机数并复制给x,利用zip()函数将元素和他对应的概率打包成tuple,然后将每个元素的概率进行叠加,直到和大于x终止循环

这样,”a”被选中的概率就是x取值位于0-0.1的概率,同理”b”为0.1-0.4,”c”为0.4-1.0,假设x是在0-1之间平均取值的,显然我们的目的已经达到

总结

以上所述是小编给大家介绍的python中的 zip函数详解及用法举例,希望对大家有所帮助!

最新资讯
暴涨后又一夜蒸发1500亿 硅谷老字号英特尔发生了什么?

暴涨后又一夜蒸发1500

过去几天,老牌芯片巨头英特尔的股价经历了一次过山车般
荣耀赵明感谢任正非和华为 先礼后兵意味浓厚

荣耀赵明感谢任正非和

荣耀独立后与华为不仅不再是一家人,而且互为竞争对手,因
刚更新8.0版的微信,都10岁了……

刚更新8.0版的微信,都1

张小龙针对社交互动功能提出的几个“小玩意儿”,无论从
回港上市或“撞车” B站和百度谁更值得投资?

回港上市或“撞车” B

B站和百度,一个是成功破圈的“后浪”,手握“中视频”流
社区团购巨头大战,“团长”进击

社区团购巨头大战,“团

在外界的一片质疑声中,巨头们的社区团购推进依然坚决,越
人类的饥饿极限到底有多长?

人类的饥饿极限到底有

长时间不进食,我们的身体会发生什么?人体耐饥饿极限是多
最新文章
在pycharm中为项目导入anacodna环境的操作方法

在pycharm中为项目导

这篇文章主要介绍了在pycharm中为项目导入anacodna环
tensorflow的ckpt及pb模型持久化方式及转化详解

tensorflow的ckpt及pb

今天小编就为大家分享一篇tensorflow的ckpt及pb模型持
PyTorch笔记之scatter()函数的使用

PyTorch笔记之scatter

这篇文章主要介绍了PyTorch笔记之scatter()函数的使用
python3实现网页版raspberry pi(树莓派)小车控制

python3实现网页版ras

这篇文章主要为大家详细介绍了python3实现网页版raspb
完美解决pycharm导入自己写的py文件爆红问题

完美解决pycharm导入

今天小编就为大家分享一篇完美解决pycharm导入自己写
pycharm内无法import已安装的模块问题解决

pycharm内无法import

今天小编就为大家分享一篇pycharm内无法import已安装