今天小编就为大家分享一篇关于Python计算库numpy进行方差/标准方差/样本标准方差/协方差的计算,小编觉得内容挺不错的,现在分享给大家,具有很好的参考价值,需要的朋友一起跟随小编来看看吧

使用numpy可以做很多事情,在这篇文章中简单介绍一下如何使用numpy进行方差/标准方差/样本标准方差/协方差的计算。

variance: 方差

方差(Variance)是概率论中最基础的概念之一,它是由统计学天才罗纳德·费雪1918年最早所提出。用于衡量数据离散程度,因为它能体现变量与其数学期望(均值)之间的偏离程度。具有相同均值的数据,而标准差可能不同,而通过标准差的大小则能更好地反映出数据的偏离度。

计算:一组数据1,2,3,4,其方差应该是多少?

计算如下:

均值=(1+2+3+4)/4=2.5
方差=((1-2.5)^2 + (2-2.5)^2 + (3-2.5)^2 +(4-2.5)^2)/4 = (2.25+0.25+0.25+2.25)/4 = 1.25

python的numpy库中使用var函数即可求解,代码&执行如下:

liumiaocn:tmp liumiao$ cat np-5.py 
#!/usr/local/bin/python
import numpy as np
arr = np.array([1,2,3,4])
print("variance of [1,2,3,4]:", np.var(arr))
liumiaocn:tmp liumiao$ python np-5.py 
('variance of [1,2,3,4]:', 1.25)
liumiaocn:tmp liumiao$ 

standard deviation: 标准偏差

标准偏差=方差的开放,所以:

计算: 一组数据1,2,3,4,其标准偏差应该是多少?

计算就很简单了,对其求出的方差1.25进行开方运算即可得到大约1.118

可以使用numpy库中的std函数就可以非常简单的求解,代码&执行如下:

liumiaocn:tmp liumiao$ cat np-6.py 
#!/usr/local/bin/python
import numpy as np
arr = np.array([1,2,3,4])
print("variance of [1,2,3,4]:", np.var(arr))
print("sqrt of variance [1,2,3,4]:",np.sqrt(np.var(arr)))
print("standard deviation: np.std()", np.std(arr))
liumiaocn:tmp liumiao$ python np-6.py 
('variance of [1,2,3,4]:', 1.25)
('sqrt of variance [1,2,3,4]:', 1.118033988749895)
('standard deviation: np.std()', 1.118033988749895)
liumiaocn:tmp liumiao$ 

sample standard deviation: 样本标准偏差

标准偏差是对总体样本进行求解,如果有取样,则需要使用样本标准偏差,它也是一个求开方的运算,但是对象不是方差,方差使用是各个数据与数学均值的差的求和的均值,简单来说除的对象是N,样本偏差则是N-1。

计算: 一组数据1,2,3,4,其样本标准偏差应该是多少?
计算如下:
均值=(1+2+3+4)/4=2.5
样本标准偏差的方差=((1-2.5)^2 + (2-2.5)^2 + (3-2.5)^2 +(4-2.5)^2)/3 = (2.25+0.25+0.25+2.25)/4 = 5/3
所以对5/3开方运算所得到的就是样本标准偏差为:1.29

同样适用numpy的std函数就可以做到这点,只需要将其一个Optional的参数设定为1即可,代码&执行如下:

liumiaocn:tmp liumiao$ cat np-7.py 
#!/usr/local/bin/python
import numpy as np
arr = np.array([1,2,3,4])
print("sample standard deviation: np.std()", np.std(arr, ddof=1))
liumiaocn:tmp liumiao$ python np-7.py 
('sample standard deviation: np.std()', 1.2909944487358056)
liumiaocn:tmp liumiao$

注意:matlab中的std实际指的是样本标准偏差,这点需要注意,如果你的代码从matlab上copy过来,请注意其实际的意义是标准偏差还是样本标准偏差

Covariance:协方差

协方差和方差较为接近,区别在于除数为N-1。

计算: 一组数据1,2,3,4,其协方差应该是多少?

计算如下:

均值=(1+2+3+4)/4=2.5
方差=((1-2.5)^2 + (2-2.5)^2 + (3-2.5)^2 +(4-2.5)^2)/(4-1) = (2.25+0.25+0.25+2.25)/3 = 1.66667

使用numpy的cov函数即可简单求出,代码和执行结果如下:

liumiaocn:tmp liumiao$ cat np-8.py 
#!/usr/local/bin/python
import numpy as np
arr = np.array([1,2,3,4])
print("Covariance: np.cov()", np.cov(arr))
liumiaocn:tmp liumiao$ python np-8.py 
('Covariance: np.cov()', array(1.66666667))
liumiaocn:tmp liumiao$

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对爱安网的支持。如果你想了解更多相关内容请查看下面相关链接

    无相关信息
最新资讯
美FCC投票决定维持废除“网络中立”规则的命令

美FCC投票决定维持废

国联邦通信委员会(FCC)周二以3比2的投票结果作出决定,维
iPhone活跃用户在2020年9月超过10亿

iPhone活跃用户在2020

一项新的估计声称目前自第一部iPhone上市以来不到5000
立讯精密前三季净利47亿 预计全年超70亿

立讯精密前三季净利47

后疫情时代消费电子需求的集中爆发,为产业链公司带来了
火热的“蚂蚁”:杠杆打新资金“供不应求”

火热的“蚂蚁”:杠杆打

蚂蚁将在A股发行不超过16.7亿股的新股,其中初始战略配
电商巨头逐鹿“双11” 扩大竞争范围从名牌到草根

电商巨头逐鹿“双11”

,在互联网平台的推动下,已有越来越多的国产新品牌正在崛
蚂蚁集团上市在即 市场影响积极

蚂蚁集团上市在即 市

蚂蚁集团上市后,无论是行业层面,还是A股整体估值体系方
最新文章
在pycharm中为项目导入anacodna环境的操作方法

在pycharm中为项目导

这篇文章主要介绍了在pycharm中为项目导入anacodna环
tensorflow的ckpt及pb模型持久化方式及转化详解

tensorflow的ckpt及pb

今天小编就为大家分享一篇tensorflow的ckpt及pb模型持
PyTorch笔记之scatter()函数的使用

PyTorch笔记之scatter

这篇文章主要介绍了PyTorch笔记之scatter()函数的使用
python3实现网页版raspberry pi(树莓派)小车控制

python3实现网页版ras

这篇文章主要为大家详细介绍了python3实现网页版raspb
完美解决pycharm导入自己写的py文件爆红问题

完美解决pycharm导入

今天小编就为大家分享一篇完美解决pycharm导入自己写
pycharm内无法import已安装的模块问题解决

pycharm内无法import

今天小编就为大家分享一篇pycharm内无法import已安装